R16

Q.P. Code: 16EE205

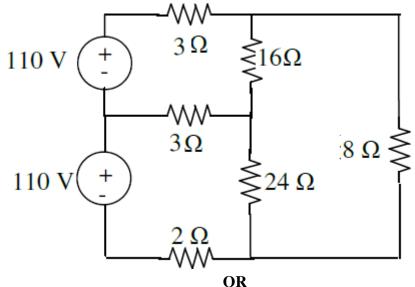
Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.TECH I Year II Semester (R16) Supplementary Examinations Dec 2017 NETWORK ANALYSIS (ECE)

Time: 3 hours Max. Marks:60

(Answer all Five Units **5 X 12 = 60** Marks)


UNIT-I

1 a State and explain Kirchhoff's laws?

4M

8M

b Using nodal analysis find all branch currents for the following circuit

2 a Define the following terms

i. Branch ii. Sub graph iii. Node iv. Tree

4M

b State and explain Norton's theorem?

8M

UNIT-II

3 a Explain the phasor relation for R,L,C elements.

6M

b The impedances of parallel circuit are Z1= (6+j8) ohms and Z2 = (8-j6) ohms. If the applied voltage is 120V, find (i) current and power factor of each branch (ii) overall current (iii) power consumed by each impedance. Draw the phasor diagram.

6M

OR

4 a Explain the complete response of source free parallel RLC Circuits.

6M

b Deduce the transient response source free series RL circuit

6M

Q.P. Code: 16EE205

UNIT-III

5		Obtain the expression for resonant frequency, bandwidth and Q-factor for parallel R-L-C circuit.	12M
		OR	
6		Write the comparison between series resonance and parallel resonance?	12N
		UNIT-IV	
7		Explain about the state variables and state variables of circuits.	12M
		OR	
8		Explain about proper and improper behavior of the circuits.	12M
		UNIT-V	
9		Explain the design procedure for a constant K low pass filter and its characteristics	12M
		OR	
10	a	What is a filter? Explain about various types of filters	6M
	b	What is a constant K low pass filter, derive its characteristics impedance *** END ***	6M